Cyclisation of 1-Methyl-9-methoxy-(E,Z)-cyclonona-1,5-diene

By Edward G. Scovell and James K. Sutherland*

(Chemistry Department, The University, Manchester M13 9PL)

Summary The cyclisation of the title diene led to an hydrindane derivative by 1,6 -bonding of the diene system and proposals are made to account for the different cyclisation paths observed in medium ring 1,5-dienes.

In continuation of our work ${ }^{1}$ on the cyclisation of medium-ring $1, \tilde{5}$-dienes we now describe the cyclisation of
the diene (1) which has been prepared by Baird. ${ }^{2}$ Reaction of (1) with N-bromosuccinimide-acetone-water yields an hydrindane (2), $\tau 8.80(3 \mathrm{H}, \mathrm{s}), 6.70(3 \mathrm{H}, \mathrm{s}), 6.42(1 \mathrm{H}, \mathrm{dd}$, $J 5$ and 1.5 Hz), and $5.90-6.25(2 \mathrm{H}, \mathrm{m})$, establishing the presence of $\mathrm{C}-\mathrm{Me},-\mathrm{OMe}, \mathrm{CHOMe}, \mathrm{CHOH}$, and CHBr , respectively. Jones oxidation of (2) yielded the ketone (4) $\left[\nu_{\max }\left(\mathrm{CCl}_{4}\right) 1715 \mathrm{~cm}^{-1} ; \tau 8.78(3 \mathrm{H} \mathrm{s}), 6.72(3 \mathrm{H}, \mathrm{s}), 6.42\right.$
$(1 \mathrm{H}, \mathrm{m})$, and $5.61(1 \mathrm{H}, \mathrm{m})]$ which on treatment with $\mathrm{Na}-$ $\mathrm{OMe}-\mathrm{MeOH}$ gave a bicyclo[3.1.0]hexane derivative ${ }^{3}$ (7) $\left[\nu_{\max }\left(\mathrm{CCl}_{4}\right) 1725 \mathrm{~cm}^{-1} ; \lambda_{\max }(\mathrm{EtOH}) 226 \mathrm{~nm}(\epsilon 1500) ; \tau 8.78\right.$ $(3 \mathrm{H}, \mathrm{s}), 6.74(3 \mathrm{H}, \mathrm{s})$, and $6.46(1 \mathrm{H}, \mathrm{dd})]$ which exchanged 2 H with NaOEt in EtOD. Reduction of (7) with NaBH_{4} gave a single alcohol $[\tau 9.45(1 \mathrm{H}, \mathrm{dd}, J 7$ and 1.5 Hz$), 8.68$ $(3 \mathrm{H}, \mathrm{s}), 6.7(3 \mathrm{H}, \mathrm{s}), 6.58(1 \mathrm{H}, \mathrm{d}, J 5 \mathrm{~Hz})$, and $5.42(1 \mathrm{H}, \mathrm{t}$, $J 8 \mathrm{~Hz})]$. Reduction of (2) with $\mathrm{Li}-\mathrm{NH}_{3}$ formed (3) $[\tau 8.95$ $(3 \mathrm{H}, \mathrm{s}), 6.74(3 \mathrm{H}, \mathrm{s}), 6.70(1 \mathrm{H}, \mathrm{m})$, and $6.10(1 \mathrm{Hm})]$, which on Jones oxidation yielded (5) $\left[\nu_{\max }\left(\mathrm{CCl}_{4}\right) 1715 \mathrm{~cm}^{-1}\right.$; $\left.\tau 8.94(3 \mathrm{H}, \mathrm{s}), \lambda_{\max } 220 \mathrm{~nm} \in 300\right)$] having 3 H exchangable with NaOEt-EtOD. These data establish the part structures (A) for the ketone (7) and (B) for ($\mathbf{2}$), which leads to two possible structures for the cyclisation product; that (2) is preferred to that in which the -OMe is attached to $\mathrm{C}-3$ follows from the structure of the starting material. The

(1)

(7)

(8)

(2); $X=B r$
(3) $X=H$

(A)
(4); $X=B r$

(5) $: X=H$

(B)

(9)
stereochemistry is assigned on the basis of the expected 'chair-like' reacting conformation (8). ${ }^{1}$ In support, the Me and Br must be cis to account for the formation of (7) with inversion of configuration at C-6.

It is instructive to compare this cyclisation with that of (Z, Z)-cyclonona-1,5-diene ${ }^{4}$ where $1,5-\mathrm{C}-\mathrm{C}$ bonding of the 1,5 -diene system is observed, as opposed to 1,6 -in the case above. The absence of other modes of ring closure in the case of (Z, Z)-cyclonona-1,5-diene can be understood by considering the expected conformation of the ion (9). 1,6Bonding would lead to a disfavoured 'boat-like' transition state, while 2,6 -bonding involves, in Baldwin's ${ }^{5}$ nomenclature a 5 -Endo-Trig cyclisation \dagger which he has pointed out in his Rules for Ring Closure is sterically much less likely than the 5 -Exo-Trig cyclisation; 1,5-bonding in (9) is of the latter type and leads to the observed products. In the case of the diene ($\mathbf{1}$) C-1 is clearly the most readily generated cationic centre and bonding to C-5 or -6 are both 5 -Exo-Trig; however, it is clear from models that $\mathrm{C}-5$ is closer to $\mathrm{C}-1$ and this cyclisation is observed. These results, in conjunction with the cyclisation of cyclo-octa-l,4-diene ${ }^{6,7}$ and humulene ${ }^{6}$ leading to annulated cyclopropanes, suggest that in mediumring dienes the ease of trigonal cyclisation is in the order 6 -Endo >5-Exo >4-Exo and 3 -Exo >5-Endo. This tentative order, taken in conjunction with expected substitution effects on double bonds and the principle of cyclisation by 'chair-like' transition states allows certain structural and stereochemical predictions to be made, in particular that 2 -methylcyclonona-1,5-dienes should cyclise initially to bicyclo[5.2.0]nonanes rather than angularly methylated hydrindanes and that only 1-methyl-(E, E)-cyclonona-1,5diene should yield the important angularly methylated trans-hydrindanes.

We thank the S.R.C. for support (to E.G.S.) and Professor J. E. Baldwin for copies of his papers prior to publication.
(Received, 7th February 1977; Com. 104.)
\dagger As suggested in Ref. 5 the smaller of the two rings being formed is considered.

[^0]
[^0]: ${ }^{1}$ J. K. Sutherland, Tetrahedron, 1974, 30, 1651.
 ${ }^{2}$ M. S. Baird, J.C.S. Chem. Comm., 1974, 196.
 ${ }^{3}$ W. G. Dauben and G. H. Berezin, J. Amer. Chem. Soc., 1967, 89, 3449.
 ${ }^{4}$ G. Nagendrappa and D. Devaprabhakara, Tetrahedron Letters, 1969, 3905.
 ${ }^{5}$ J. E. Baldwin, J.C.S. Chem. Comm., 1976, 734.
 ${ }_{6}$ J. M. Greenwood, M. D. Solomon, J. K. Sutherland, and A. Torre, J. Chem. Soc. (C), 1968, 3004.
 ${ }^{7}$ A. R. Allan and M. S. Baird, Tetrahedron Letters, 1976, 3831.

